• 您的當前位置:廈門大學研究生院>復習指導>數學復習>2018廈大考研教你三步做好考研數學證明題
      數學復習
    分享到
    2018廈大考研教你三步做好考研數學證明題
    添加時間:2016/12/29  來源:思睿廈大考研網  瀏覽數:7061
          證明題是考研數學中的大題,如果能夠好好把握住,對于數學的成績將是一個大提升。研途思睿廈大考研網的權威數學專家教大家三步做好證明題,一起來學習一下吧~
     
      1.結合幾何意義
     
      記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結論。
     
      知道基本原理是證明的基礎,知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如2006年數學一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數學推理是環環相扣的,如果第一步未得到結論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調有界數列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數列來說,“單調性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
     
      2.借助幾何意義尋求證明思路
     
      一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎的是要正確理解題目文字的含義。如2007年數學一第19題是一個關于中值定理的證明題,可以在直角坐標系中畫出滿足題設條件的函數草圖,再聯系結論能夠發現:兩個函數除兩個端點外還有一個函數值相等的點,那就是兩個函數分別取最大值的點(正確審題:兩個函數取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數F(x)=f(x)-g(x)有三個零點,兩次應用羅爾中值定理就能得到所證結論。再如2005年數學一第18題(1)是關于零點存在定理的證明題,只要在直角坐標系中結合所給條件作出函數y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數圖形有交點,這就是所證結論,重要的是寫出推理過程。從圖形也應該看到兩函數在兩個端點處大小關系恰好相反,也就是差函數在兩個端點的值是異號的,零點存在定理保證了區間內有零點,這就證得所需結果。如果第二步實在無法完滿解決問題的話,轉第三步。
     
      3.逆推法
     
      從結論出發尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發構造函數,利用函數的單調性推出結論。在判定函數的單調性時需借助導數符號與單調性之間的關系,正常情況只需一階導的符號就可判斷函數的單調性,非正常情況卻出現的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數的符號判定一階導數的單調性,再用一階導的符號判定原來函數的單調性,從而得所要證的結果。
     

        上一篇:2018考研數學:140+大神是這樣學數學的
        下一篇:2018考研文科生備考數學三大原則
    最新文章
    最新專題
    欄目推薦
    全站熱點
    咨詢電話:  咨詢QQ:4008113567   E-mail:1575773708@qq.com  蜀ICP備12021077號
    Copyright @ 2006-2016  廈門研途教育科技有限公司    All Rights Reserved   版權所有
    合作洽談:QQ1274134883  法律顧問:王朝遠
    江苏福利彩票快3